Landau levels and Riemann zeros.

نویسندگان

  • Germán Sierra
  • Paul K Townsend
چکیده

The number N(E) of complex zeros of the Riemann zeta function with positive imaginary part less than E is the sum of a "smooth" function N[over ](E) and a "fluctuation." Berry and Keating have shown that the asymptotic expansion of N[over ](E) counts states of positive energy less than E in a "regularized" semiclassical model with classical Hamiltonian H=xp. For a different regularization, Connes has shown that it counts states "missing" from a continuum. Here we show how the "absorption spectrum" model of Connes emerges as the lowest Landau level limit of a specific quantum-mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of N(E).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Landau-siegel Zeros and Zeros of the Derivative of the Riemann Zeta Function

We show that if the derivative of the Riemann zeta function has sufficiently many zeros close to the critical line, then the zeta function has many closely spaced zeros. This gives a condition on the zeros of the derivative of the zeta function which implies a lower bound of the class numbers of imaginary quadratic fields.

متن کامل

An Asymptotic Formula for a Sum Involving Zeros of the Riemann Zeta-function

E. Landau gave an interesting asymptotic formula for a sum involving zeros of the Riemann zeta-function. We give an asymptotic formula which can be regarded as a smoothed version of Landau’s formula.

متن کامل

On the Distribution of Imaginary Parts of Zeros of the Riemann Zeta Function

There is an intimate connection between the distribution of the nontrivial zeros of the Riemann zeta function ζ(s) and the distribution of prime numbers. Critical to many prime number problems is the horizontal distribution of zeros; here the Riemann Hypothesis (RH) asserts that the zeros all have real part 1 2 . There is also much interest in studying the distribution of the imaginary parts of...

متن کامل

Riemann’s zeta function and the broadband structure of pure harmonics

Let a ∈ (0, 1) and let Fs(a) be the periodized zeta function that is defined as Fs(a) = ∑ n−s exp(2πina) for 1, and extended to the complex plane via analytic continuation. Let sn = σn + itn, tn > 0, denote the sequence of nontrivial zeros of the Riemann zeta function in the upper halfplane ordered according to nondecreasing ordinates. We demonstrate that, assuming the Riemann Hypothesis, ...

متن کامل

Quantum mechanics and quantum Hall effect on Riemann surfaces

The quantum mechanics of a system of charged particles interacting with a magnetic field on Riemann surfaces is studied. We explicitly construct the wave functions of ground states in the case of a metric proportional to the Chern form of the θ-bundle, and the wave functions of the Landau levels in the case of the the Poincaré metric. The degeneracy of the the Landau levels is obtained by using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 101 11  شماره 

صفحات  -

تاریخ انتشار 2008